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XProtoSphere: an eXtended multi-sized sphere packing
algorithm driven by particle size distribution
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Abstract The sphere packing problem, which involves1

filling an arbitrarily shaped geometry with the maxi-2

mum number of non-overlapping spheres, is a critical3

research challenge. ProtoSphere is a prototype-oriented4

algorithm designed for solving sphere packing problems.5

Due to its easily parallelizable design, it exhibits high6

versatility and has wide-ranging applications. However,7

the controllable regulation of particle size distribution8

(PSD) produced by ProtoSphere is often neglected, which9

limits its application on algorithm. This paper proposes10

a novel PSD-driven technique that extends the Proto-11

Sphere algorithm to achieve multi-sized sphere packing12

with distribution-specific characteristics, as dictated by13

a pre-defined cumulative distribution function. The pro-14

posed approach improves the controllability and flexi-15

bility of the packing process, and enables users to gen-16

erate packing configurations that meet their specific re-17

quirements. In addition, by combining the relaxation18

method with the ProtoSphere algorithm, we can fur-19

ther improve the packing density and ensure the av-20

erage overlap below 1%. Our method generates multi-21

sized particles that can be used to simulate the behavior22

of various granular materials, including sand-like and23

clay-like soils.24
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Fig. 1: Armadillo’s XProtoSphere packing results (a),

as well as corresponding cross-sectional views (b)

1 Introduction 28

The sphere packing algorithm has broad application to 29

the process of filling particles densely within a given 30

boundary without overlapping. It is commonly utilized 31

to solve the problem of optimal sphere packing in three 32

dimensions in mathematics [15], which is relevant to 33

many fields such as coding theory and cryptography. 34

In materials science, sphere packing algorithms aid in 35

designing materials with desirable physical properties 36

[29]. In wireless communication, they play a critical role 37

in setting up the closest arrangement of antennas to 38

optimize signal quality and coverage [9], and so forth 39

[17]. 40

In computer graphics community, sphere packing is 41

frequently used for efficient spatial segmentation, col- 42

lision detection [33], automatic rigging [3] and physi- 43

cally based simulation for granular materials [5,31]. In 44

particular, granular material simulations require non- 45

overlapping spheres for computational stability and a 46

high packing density to simulate realistic sediment struc- 47

tures. Many of these applications utilize multi sized 48

sphere packing algorithms rather than uniform sphere 49
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Fig. 2: Comparison of multiple particle insertion types based on the ProtoSphere algorithm, using a 2D Bunny

polygon

packing algorithms, due to the flexibility and adaptabil-50

ity that multi-sized spheres offer in effectively model-51

ing complex physical systems with varying particle sizes52

and densities. In contrast, uniform sphere packing algo-53

rithms are often limited in their applicability, as they54

are primarily suitable for modeling homogeneous parti-55

cle systems. Furthermore, uniform sphere packing can56

be easily achieved by fine-tuning certain sampling algo-57

rithms, such as the fast Poisson disk sampling method58

[8] or SPH-based blue noise sampling [21]. However,59

when these sampling algorithms are applied to multi-60

sized sphere packing problem, their efficacy in physi-61

cal simulations may be impeded by a higher overlap-62

ping rate and porosity within the sampling space [32].63

Therefore, these sampling methods may not be directly64

applicable for certain physical simulation applications,65

especially in the Discrete-Element Method (DEM) [11].66

In comparison to the sampling algorithms and uni-67

form sphere packing algorithm mentioned before, Weller68

et al. [34] introduced a multi-sized packing algorithm69

called ProtoSphere. The ProtoSphere algorithm is in-70

spired by the prototype-based approach in machine learn- 71

ing, and it is capable of efficiently handling arbitrarily 72

shaped objects. Furthermore, the algorithm is highly 73

parallelizable, which makes it a promising option for a 74

wide range of sphere packing problems. However, the in- 75

ability of the ProtoSphere method to precisely control 76

the particle size distribution of the generated spheres 77

may limit its applicability, in particular granular simu- 78

lation tasks, such as simulating soil structures contain- 79

ing particles of varying sizes. This limitation may affect 80

the ability to achieve more realistic simulation results. 81

To address these problems, this paper makes the 82

following contributions: 83

– An extended algorithm that is based on the stan- 84

dard ProtoSphere algorithm. The proposed algorithm 85

enables users to predetermine a target particle size 86

distribution using a cumulative distribution func- 87

tion, thereby allowing for greater control over the 88

particle size distribution of packed spheres. 89

– An randomly Offset Discrete Distance Field (ODDF) 90

based strategy is proposed for achieving faster con- 91
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vergence of particle size, as well as addressing the92

issue of boundary expansion towards the center that93

arises during particle generation using the extended94

ProtoSphere algorithm.95

– ADiscrete-Element based particle relaxation method96

is proposed to improve the packing density (see Fig-97

ure 1). This method can be integrated with the98

extended ProtoSphere algorithm and is applicable99

in physically-based simulations. Compared to the100

SPH-based particle relaxation method, the approach101

offers greater stability and can be applied to a wider102

range of multi-sized particle distributions.103

2 Related Work104

The focus of this review section is to investigate the re-105

search and applications of the sphere packing problems106

in computer graphics and related fields. As is commonly107

understood, the proper placement of particles plays a108

vital role in the study of particle-based physically simu-109

lation animation. Particle-based methods typically use110

uniform particles, although in certain circumstances,111

such as those involving adaptive methods [12,1,35,36]112

or DEM-related frameworks [30,31], the application of113

multi-sized particles becomes imperative. With the ad-114

vantage of being adaptable to arbitrary dimensions and115

objects, the ProtoSphere method was extended in our116

study to enable enhanced manipulation of particle size117

distribution. The resulting approach was explored for118

its suitability in physically-based simulation scenarios,119

specifically those involving DEM.120

2.1 Sampling Based Approaches121

In terms of the sampling and packing problems, al-122

though their objectives and application scenarios may123

differ, both algorithms are fundamentally concerned with124

the distribution of points in space. Thus, the points125

generated by the sampling method can be employed as126

centers for particles in a sphere packing algorithm by127

assigning each point a suitable radius.128

Poisson Disk Sampling Blue noise sampling is a129

widely used technique in computer graphics due to its130

ability to produce a uniform distribution [38], making131

it applicable in a wide variety of applications [40,22,132

37,20]. Poisson disk sampling, one of its patterns, is133

widely employed in rendering, geometry processing, and134

physically-based simulation due to its numerous appli-135

cations and versatility. In particular, the faster versions136

of Poisson disk sampling, enhanced by Bridson [8], ex-137

hibit greater adaptability to arbitrary dimensions and138
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Fig. 3: Comparison of particle packing results obtained

with and without the randomly offset discrete element

field strategy demonstrates the efficiency of this tech-

nique in achieving higher packing densities

are comparatively easier to implement. Although this 139

method has demonstrated commendable performance 140

and broad applicability, regulating the packing density 141

of the resulting particles can be challenging, especially 142

in the case of multi-sized particle packing, where parti- 143

cles may overlap. 144

SPH Based Relaxation In general, the process of 145

sampling particles for a given boundary involves divid- 146

ing the plane into uniform grids in 2D (or voxelizing in 147

3D) and generating a particle within each uniform grid 148

[26]. However, this method may produce an irregular 149

distribution of particles near the boundary, which has 150

the potential to obscure the original geometry’s bound- 151

ary information. To overcome this issue, Schechteret et 152

al. [25] employed a Poisson disk relaxation method to 153

facilitate surface and volume sampling. Subsequently, 154

Jiang et al. [21] attempted to use a cohesion-term in- 155

tegrated SPH method for blue noise sampling, which 156

yielded promising outcomes for the relaxation of bound- 157

ary particles. Moreover, they demonstrated that their 158

method can be combined with adaptive methods [1] to 159

facilitate multi-sized particle sampling. However, these 160

approaches are all based on the SPH-based particle 161

sampling method, and none of them are able to avoid 162

the issue of large overlap between particles. Another 163

problem remains that when particles are not uniformly 164

distributed within the SPH kernel, these algorithms 165

may become unstable. 166

2.2 Multi-Sized Sphere Packing 167

The algorithms that relate to multi-sized sphere pack- 168

ing can be categorized into three principal groups, namely 169

geometry separation-based, mesh-based, and Apollonian- 170

based methods: 171

Geometric Separation Based Approach Geomet- 172

ric separation-based algorithms focus on the task of 173
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packing multi-sized particles by randomly inserting par-174

ticles within regions with low filling rate and itera-175

tively removing any overlapping particles. As an ex-176

ample, Lopes et al. [23,24] proposed a two-dimensional177

geometric separation method that enables the control of178

both porosity and particle size distribution through the179

use of a grid mapping approach. This method achieves180

high-efficiency particle insertion and removal, thereby181

facilitating the packing of multi-sized spheres. While ge-182

ometric separation-based algorithms can control poros-183

ity and particle size distribution, their strong stochas-184

ticity and the possibility of repeated insertion and re-185

moval of particles can make it difficult to ensure their186

high performance and low error rate when extended to187

3D space.188

Mesh Based Sphere Packing The objective of these189

investigations is primarily to develop particle-based, non-190

overlapping geometries for use in DEM methods. The191

mesh-based methods utilized involve triangulating (2D)192

[4] or tetrahedral partitioning (3D) [14] in a given do-193

main, where particles can be positioned at vertices or194

within the unit geometry [10,18,19]. Recently, a re-195

fined approach for multi-sized particle packing has been196

proposed by Zhang et al. [39], which enables efficient197

and precise packing of particles for arbitrary 2D ge-198

ometries. This is achieved by improving upon Cui et199

al.’s algorithm [10] and utilizing a strategy that in-200

volves placing particles at each vertex of the triangu-201

lar surface. Wang et al. [32] presented a novel method202

for optimizing porosity to enhance packing density us-203

ing the Power diagram [2]. This approach allows for204

the predefinition of particle size distribution, but the205

outcomes attained by this method suffer from an error206

rate of 10-20%. Both mesh-based studies face challenges207

when attempting to extend their algorithms to three-208

dimensional spaces, due to issues with performance and209

algorithm instability.210

Apollonian Based Method The Apollonian packing211

algorithm [7] necessitates the initial placement of three212

mutually tangent discs, with each disc touching the213

other two. Subsequently, the algorithm iteratively in-214

serts additional discs into the largest available circular215

cavity within the remaining gap, utilizing this process216

to generate fractals of arbitrary dimensionality. The217

ProtoSphere method [34] is inspired by the prototype-218

guided approach in machine learning and employs an219

optimization process that utilizes multi-sized particles220

to fill geometries of arbitrary dimensions. The method221

yields results comparable to those produced by Apollo-222

nian sphere packing, while also being capable of accom-223

modating arbitrary geometries that are challenging to224

Algorithm 1 Parallel ProtoSphere Algorithm

Input: surface Ω of object O, required particle number N
Output: a group of particles with radius information
1: DΩ ← initialize the discrete distance field
2: repeat
3: S : {p1,p2, · · · ,pn} ← place prototype pi randomly

inside grid ci
4: for each pi in S do
5: repeat
6: qc = arg min {∥pi − q∥ : q ∈ Ω}
7: pi ← pi + ε(t) · (pi − qc)
8: ri = ∥pi − qc∥
9: until pi has converged
10: end for
11: sort P by max radius ri
12: find pk ∈ P that are not overlapped by any pi

13: insert particles at positions pk with radii rk
14: update discrete distance field DΩ by Ω ← Ω ∪Ωpk

15: until number of inserted particles > N

achieve using the latter method. Subsequently, Teuber 225

et al. [28] proposed a GPU-based adaptive grid method 226

that significantly enhances the performance of Proto- 227

Sphere. Recently, Bonneau et al. [6] sought to incorpo- 228

rate the multi-sized particles generated by ProtoSphere 229

into the DEM, and achieved this by constraining the 230

random point locations to control the size of the packed 231

particles within a range pre-defined by the user. How- 232

ever, currently available Apollonian-based methods fall 233

short in achieving optimal particle size distribution. To 234

address this limitation, this paper proposes an exten- 235

sion of the ProtoSphere method that enables precise 236

management of the particle size distribution. Addition- 237

ally, the performance of this extended approach is eval- 238

uated in the context of a physically-based particle sim- 239

ulation. 240

3 ProtoSphere 241

Weller et al. [34] introduced the ProtoSphere algorithm,

which is centered around the determination of the sphere

radius by measuring the shortest distance between a

point and the surface. To be specific, let Ω represent

the surface of an arbitrary object O. The point qc on

surface Ω that is closest to point p can be defined as

follows:

qc = arg min {∥p− q∥ : q ∈ Ω} (1)

Here, point p can represent any position located 242

within the interior of object O. The generated parti- 243

cle is centered at point p and has a radius ∥p− qc∥. 244

To approximate Apollonian-like sphere packing, the

ProtoSphere algorithm employs a prototype-guided strat-

egy that considers point p as a prototype and seeks to
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Fig. 4: Visualization of the particle movement process during coupling with the Discrete Element Relaxation

maximize its distance from the surface Ω (thus obtain-

ing a particle with the largest possible radius within

object O). The described process can be achieved using
the following equation:

p← p+ ε(t) · (p− qc) (2)

where the cooling function ε(t) ∈ [0, 1] is employed to245

facilitate large movements during initial iterations and246

finer adjustments in subsequent steps. By employing247

this approach, the standard version of the ProtoSphere248

algorithm can be implemented through the following249

three steps: 1. Stochastically generate a point p that250

lies within the interior of object O. 2. Update the po-251

sition of point p using Equation(2) iteratively until the252

convergence criterion is met. 3. Insert a particle with253

radius ∥p− qc∥ at point p and return to the first step.254

It should be noted that the addition of each new par-255

ticle necessitates the availability of surface information256

Ωp to facilitate the updating of surface Ω = Ω ∪Ωp.257

Importantly, the requirement for surface informa-258

tion with each new particle may lead to computational259

performance issues. Moreover, the standard ProtoSphere260

algorithm is confined to local optimization for each pro-261

totype and does not achieve global optimization. To262

overcome these limitations, Weller et al. [34] employs a263

gridding strategy that partitions the interior space of264

object O. With this approach, a prototype can be posi-265

tioned within each grid, enabling global optimization by266

allowing them to move independently. In addition, they267

enhance the computational efficiency of determining the268

nearest boundary point by pre-computing the discrete269

distance field. The parallel version of the ProtoSphere270

algorithm is presented in Algorithm 1 with a detailed271

description. Figure 2(a) showcases a two-dimensional272

result obtained after computation with the parallelized273

algorithm.274

4 Extended ProtoSphere (XProtoSphere) 275

ProtoSphere presents a superior option in sphere pack- 276

ing algorithms, as it possesses the capability to address 277

arbitrarily shaped and multi-dimensional particle pack- 278

ing challenges. Additionally, its algorithmic implemen- 279

tation is straightforward and lends itself to paralleliza- 280

tion, further increasing its competitiveness. Neverthe- 281

less, the fractal characteristics of the results generated 282

by ProtoSphere pose challenges to its direct utiliza- 283

tion in DEM-related granular simulations. Bonneau et 284

al. [6] made an attempt to constrain the size of the 285

particles generated by ProtoSphere by setting a range 286

limit. However, they acknowledged explicitly that their 287

method does not provide a means to regulate the parti- 288

cle size distribution of the outcomes. Therefore, our ex- 289

tended approach endeavors to enable control over the 290

particle size distribution and address associated chal- 291

lenges. 292

4.1 PSD-Guided ProtoSphere 293

Modeling granular materials requires the determination

of the relative proportion of particles of different sizes

present in the material, which can be characterized by a

piecewise constant distribution function f(r) according

to the following expression:

f(r) =



P0 if r0 ≤ r < r1

P1 if r1 ≤ r < x2

...
...

Pn−1 if rn−1 ≤ r < rn

(3)

where the probability density function (PDF) of each 294

particle size interval [r0, r1), [r1, r2), ..., [rn−1, rn) is a 295

constant value P0, P1, ..., Pn−1. 296
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To achieve a controlled particle size distribution,297

it is essential to ensure that the radii of the parti-298

cles generated by ProtoSphere align as closely as pos-299

sible with the PDF f(r). Assuming that a set of target300

radii that conform to the PDF f(r) can be obtained301

beforehand, the objective is then turn to ensure that302

the radii of all the particles generated by ProtoSphere303

converge to their respective target radii. Regarding the304

pre-calculation of the target radii, the cumulative dis-305

tribution function (CDF) F (r) of the PDF f(r) can be306

computed by F (r) =
∫ r

−∞ f(t)dt [13].307

The fundamental concept behind our approach is to

assign a target radius r′i to each prototype p during the

gridding process (in Algorithm 1 line 3), and then to

iteratively adjust the radius of each prototype ri un-

til it converges to its target radius r′i. We can modify

Equation(2) as follows:

p← p+ ε(t) · (r′ − r)
p− qc
∥p− qc∥

(4)

This modified formula indicates that if the target radius

r′ exceeds the current radius r = ∥p− qc∥, point p will

move away from qc, otherwise it will move towards qc if

the current radius is greater than the target radius. For

the cooling function ε(t), we found that a time-based

decay function performed better in our experiments.

The function is shown as follows:

ε(t) =
ε(t− 1)

1 + kt
(5)

where k is a parameter that regulates the decay rate,308

and we set its value to 0.01 for all experiments.309

4.2 Randomly ODDF-Based Strategy310

In Section 4.1, we introduce a modification to the pro-311

totype’s motion, whereby its radius continuously con-312

verges towards the predetermined radius. Nevertheless,313

in contrast to the standard ProtoSphere algorithm, our314

approach yields relatively diminutive particle sizes in315

the initial stages of particle insertion. This results in the316

initial particles being inevitably placed at the bound-317

ary of the object, and subsequent inserted particles318

gradually expand from the boundary towards the cen-319

ter, which is an undesirable outcome. Specifically, this320

method of particle insertion gives rise to two main is-321

sues. Firstly, inserting particles in this way requires322

more steps, as each newly inserted particle can be seen323

as a new boundary of the object. Secondly, it results in324

a more homogeneous distribution of the inserted par-325

ticles, as the particle size distribution of the newly in-326

serted particles should be similar for each layer. Figure327

2(b) illustrates the process of particle insertion using328

Fig. 5: Comparison experiment on the effects of multi-

sized particle packing on capillary forces at two porosi-

ties

the 2D PSD-Guided ProtoSphere method, where it is 329

evident that the process starts from the boundary and 330

gradually progresses towards the center. 331

This issue arises due to the standard ProtoSphere 332

algorithm’s determination of the radius for each particle 333

to be inserted, which is based on the distance between 334

the current particle p and the nearest point qc on the 335

boundary. More specifically, the standard ProtoSphere 336

algorithm neglects the consideration of particle radius 337

sizes, leading to the insertion of several large-radius 338

particles during the initial stages of particle insertion, 339

forming the internal skeleton of the geometry. While 340

our modified ProtoSphere method (Equation(4)) is de- 341

signed to regulate the size of the particle radius, and in 342

the majority of cases, it is unnecessary to generate par- 343

ticles with such a large radius. Consequently, the pro- 344

cess of gradually inserting particles layer by layer from 345

the boundary towards the center, as illustrated in Fig- 346

Fig. 6: Illustration of the randomly offset discrete dis-

tance field-based strategy for particle packing
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ure 2(b), is observed. To address the issue of undesired347

particle insertion, our proposed solution involves assign-348

ing a unique discrete distance field to each particle. This349

allows for the recalculation of both the displacement di-350

rection p−qc and the particle radius r. We achieve this351

by introducing a random variable ρ ∈ [0.04, 0.2] to each352

prototype. Then we divide the discrete distance field353

DΩ into multiple subfields based on the maximum dis-354

tance dmax in the field. As a result, we obtain multiple355

distance fields with varying offset levels, as shown by356

the dashed lines in Figure 6. Based on the position of357

current prototype p in the distance field, we locate the358

two offset distance fields, Ou
Ω and Ol

Ω that are closest359

to it. At last, the updated distance field D′
Ω can be360

computed by utilizing the pre-computed distance field361

DΩ , the offset distance fields Ou
Ω and Ol

Ω , as follows:362

D′
Ω(p) = min(DΩ(p),min(Ou

Ω(p),Ol
Ω(p)))

Ou
Ω(p) =

⌈
DΩ(p)

ρdmax

⌉
ρdmax −DΩ(p)

Ol
Ω(p) = DΩ(p)−

⌊
DΩ(p)

ρdmax

⌋
ρdmax

(6)

As illustrated in Figure 2(c), our proposed strategy363

can insert particles of the target size at unpredictable364

locations in the space during the initial insertion phase.365

This is in contrast to Figure 2(b), where particle inser-366

tion is constrained to the boundaries only. Moreover,367

we evaluated the performance of the XProtoSphere al-368

gorithm with and without the randomly ODDF strat-369

egy, and obtained promising results. As shown in Figure370

3(a), the algorithm with the ODDF strategy is capa-371

ble of inserting more particles at each iteration, result-372

ing in a higher total number of inserted particles com-373

pared to the non-ODDF strategy. To further evaluate374

the algorithm’s efficiency, we measured the computa-375

tion time for the ODDF and non-ODDF strategies, as376

depicted in Figure 3(b). The results demonstrate that377

the ODDF strategy consistently outperforms the non-378

ODDF strategy in generating the same number of par-379

ticles. This suggests that although the ODDF strategy380

requires more computational resources, it is more effi-381

cient for particle insertion.382

4.3 Coupling with Discrete Element Relaxation383

In the standard ProtoSphere algorithm, the porous re-384

gions within the space can be continuously explored to385

identify and fill them with particles of appropriate sizes.386

However, when there is a limit on the particle size that387

we need to insert, it becomes challenging to maximize388

the packing density of the entire region and minimize389

Fig. 7: Comparison between multi-sized particles pack-

ing using the SPH-based relaxation and our method

when applied to DEM

its porosity. It is essential to acknowledge that the in- 390

ability to further reduce the spatial porosity is mainly 391

attributed to the suboptimal distribution of the already 392

inserted particles, which limits our capability of further 393

particle insertion. If we induce particle movements, then 394

more space can be created during the motion, thereby 395

allowing for the insertion of additional particles. The 396

ProtoSphere algorithm detects particle overlaps during 397

the insertion of new particles and subsequently removes 398

them. However, our proposed approach involves relax- 399

ing the strict constraints on particle overlap during the 400

Algorithm 2 XProtoSphere Coupling with Discrete

Element Relaxation
Input: surface Ω of object O, a probability density function

f(r), maximum relaxation steps N
Output: a group of particles with radius information
1: insertion number ℓ← 1
2: repeat
3: Using XProtoSphere(Ω,f(r)) to insert particles once
4: for relaxation steps i = 0;i < N ;i = i+ 1 do
5: elastic force Fn

k between the particles can be com-
puted by employing Equation(7)

6: compute the acceleration a of particles and update it
using the energy decay mechanism outlined in Equa-
tion(8)

7: use Equation(9) corrects the position and velocity of
particles near the boundary

8: advance the particle
9: end for
10: until ℓ > maximum insertion number
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Distribution A Distribution B Distribution C

Fig. 8: Comparison experiment using XProtoSphere for multi-sized particle packing under different pre-defined

particle size distributions

insertion phase. Subsequently, we utilize the DEM to401

iteratively reduce the overlap between particles.402

The DEM is a widely used Lagrangian-based sim-

ulation model for granular media, commonly employed

in the field of soil mechanics [11]. In the DEM system,

each particle is treated as a rigid body with a defined

position and radius. When the distance between two

particles, denoted as d = ∥xk1 − xk2∥, is less than the

sum of their radii (i.e., rk1+rk2), they are considered to

be in contact or collide with each other. At this point,

normal and tangential forces, denoted as F n
k and F t

k ,

respectively, are exerted on the particles to simulate

their interactions [16]. Our proposed approach focuses

on utilizing only the elastic force F n
k in the normal di-

rection to separate overlapping particles, define as:

F n
k = KN (rk1 + rk2 − d)x̂k1k2

KN =
2Y1R1Y2R2

Y1R1 + Y2R2

x̂k1k2
=

xk1
− xk2

d

(7)

where KN represents the normal stiffness coefficient,403

which is related to Young’s modulus Y and particle404

radius R.405

To prevent continuous fluctuations caused by par-

ticles getting trapped in narrow gaps, we employ an

energy decay mechanism [27] as follow:

a← a

(
1− λsgn

(
a

(
v +

a∆t

2

)))
(8)

where the parameter λ represents the damping coeffi- 406

cient, a denotes acceleration, v represents velocity, and 407

∆t is the time step. Additionally, the sgn function is 408

utilized with possible values of -1, 0, or 1. 409

It is important to note that when a particle begins

to move due to elastic forces, it must be constrained

to remain within the object. In particular, if the parti-

cle makes contact with the boundary, a repulsive force

must be applied to prevent it from crossing the bound-

ary. In our approach, if a particle p exceeds the bound-

ary Ω, we do not apply a repulsive force. Rather, we

modify its position and adjust its velocity to ensure

that it remains inside the object O. Specifically, we use

position modification to move the particle back inside

the boundary, and velocity adjustment to match the

post-repulsive velocity, as shown below:

x← x−DΩ(x)∇D̂Ω(x)

v ← e(v − 2(v · D̂Ω(x))D̂Ω(x))
(9)

The equation involves the repulsive coefficient repre- 410

sented by the parameter e, and the normalized gra- 411

dient of the discrete distance field DΩ at position x, 412

denoted by D̂Ω(x). Note that the formula presented 413

above is executed only when the distance DΩ(x) is less 414

than or equal to 0. The complete particle motion was 415

recorded during the application of the Discrete Element 416

Relaxation, as shown in Figure 4. The bunny-shaped 417

multi-sized spheres in Step 1 were generated using the 418
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XProtoSphere, with a minor modification to the inser-419

tion process. Specifically, the insertion condition in line420

18 of Algorithm 3 was altered to permit the insertion421

of spheres with an overlapping rate of ϵ and ξ or less,422

rather than those without any overlapping spheres. This423

is due to the fact that in the initial stages of the process,424

if the particles do not overlap, the Discrete Element425

Relaxation is unable to generate the necessary forces426

to move the particle swarm and adjust particle posi-427

tions to optimize space filling. It is important to note428

that when coupled with the discrete element relaxation429

method, a small overlap between particles may still oc-430

cur. Detailed experimental results on the spatial poros-431

ity and overlapping rate obtained by coupling XProto-432

Sphere with discrete element relaxation are presented433

in Table 1.434

4.4 Implementation Details435

Algorithm 3 outlines the specific implementation details436

for XProtoSphere, highlighting the differences from the437

standard ProtoSphere algorithm in red. Compared to438

ProtoSphere, XProtoSphere necessitates a pre-defined439

probability density function f(r) to set the target par-440

ticle size distribution as input data. Regarding the ran-441

domly ODDF-strategy discussed in Section 4.2, it is442

worth noting that it is only necessary to apply this443

strategy during the initial particle insertion process (line444

7). This is due to the fact that particles can already be445

inserted at non-boundary locations of the object O in446

the first operation, and the resulting inserted particles447

will subsequently be utilized as new boundary informa-448

tion in subsequent computations. During the particle449

insertion process, we apply a stricter constraint as in-450

dicated in line 18 of our algorithm.451

In order to minimize the discrepancy between the452

target particle size and the actual size following inser-453

tion, we also require that | rkr′k −1| not exceed the thresh-454

old ϵ = 0.01. Typically, an acceptable particle overlap-455

ping rate (ξ which is described in Section 4.3) of 0.4456

to 0.6 is employed, as this allows for minimal particle457

overlapping following implementation of the Discrete458

Element Relaxation. Algorithm 2 details the process of459

coupling XProtoSphere with Discrete Element Relax-460

ation to further enhance the packing density. Upon the461

insertion of each particle by means of XProtoSphere,462

the iteration process is performed N = 1000 times us-463

ing Discrete Element Relaxation.464

5 Experimental Results465

This section presents the results obtained by our al-466

gorithm for sphere packing of various geometries, along467

Algorithm 3 XProtoSphere Algorithm

Input: surface Ω of object O, a probability density function
f(r)

Output: a group of particles with radius information
1: insertion number ℓ← 1
2: DΩ ← initialize the discrete distance field
3: repeat
4: S : {p1,p2, · · · ,pn} ← place prototype pi randomly

inside grid ci
5: for each prototype pi, a target radius r′i is generated

independently based on f(r)
6: if ℓ == 1 then
7: use Equation(6) to compute D′

Ω as discrete distance
field

8: else
8: update discrete distance field DΩ by Ω ← Ω ∪Ωpk

9: end if
10: for each pi in S do
11: repeat
12: qc = arg min {∥pi − q∥ : q ∈ Ω}
13: pi ← pi + ε(t) · (r′i − ri)

pi−qc

∥pi−qc∥
14: ri = ∥pi − qc∥
15: until pi has converged
16: end for
17: sort P by max radius ri
18: find pk ∈ P that are not overlapped by any pi and

| rk

r′
k

− 1| < ϵ

19: insert particles at positions pk with radii rk
20: ℓ = ℓ+ 1
21: until ℓ > maximum insertion number

with its application in physically-based simulation algo- 468

rithms. We also evaluated the performance of the XPro- 469

toSphere when applied to different geometries, as shown 470

in Table 1. A, B, C meaning the particle size distribu- 471

tions shown in Figure 8. 472

The computational processes defined by lines 6 to 473

17 in Algorithm 3 and lines 4 to 8 in Algorithm 2 474

are executed on an NVIDIA GeForce RTX3090 24GB 475

GPU by using CUDA programming framework. The 476

pre-calculation of the discrete distance field and the 477

computation of the particle insertion step are executed 478

on a AMD Ryzen 9 3900X CPU. 479

Application to Capillary Model To accurately sim- 480

ulate sandy materials with clay-like behavior, achieving 481

a higher packing density of multi-sized particles is cru- 482

cial to enhance the realism of the simulation and dis- 483

tinguish the loose nature of the sand. In this study, we 484

employed multi-sized particles with high porosity (low 485

packing density) and low porosity (high packing den- 486

sity) to model sand with clay properties, as depicted 487

in Figure 5. By applying the capillary force model pro- 488

posed by Wang et al. [31], Our findings suggest that 489

low-porosity particles exhibit a greater propensity for 490

clay-like behavior compared to high-porosity particles. 491

This finding shows that the proposed method is useful 492

for reproducing sediment structures. 493
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Table 1: Comparing XProtoSphere performance across different geometries

Model
Number Time(s) Overlap(×10−6) Porosity(%) BHD(×10−3) JSD(×10−3) KLD(×10−2)

A B C A B C A B C A B C A B C A B C A B C
Armadillo 243k 323k 174k 328 431 231 7.87 15.1 13.4 30 33.2 37.8 2.4 4.3 24 2.3 4.28 23.6 0.8 1.71 9.6

Beast 292k 401k 217k 410.1 592.56 315.53 8.63 23.39 12.18 29 32.8 35.7 3.8 5.5 24.13 3.7 5.5 23.7 1.27 2.2 9.6
Bunny 282k 387k 206k 384.53 571.01 278.3 8.519 10.7 12.4 31 35.2 38 3.5 6.12 27.9 3.43 6.09 27.44 1.17 2.4 11.1

Cheburashka 229k 324k 184k 256.249 367.13 203.9 8.1 11.6 11.3 28.7 34.3 34 6.34 10 26.6 6 9.9 26.1 2.06 4.04 10.6
Cow 303k 418k 226k 389.06 577.68 285.25 8.707 15.5 11.8 29.9 34.4 36.1 4.13 6.7 26.2 3.99 6.7 25.8 1.36 2.7 10.4

Dolphin 293k 415k 230k 363.56 555.11 280.4 7.888 32.1 10.5 28.8 33.8 34.7 5.66 7.5 26.3 5.44 7.4 25.9 1.84 3 10.5
Dragon 202k 274k 156k 221.17 286.7 180.47 11.44 15.5 33.1 28.9 35 33.5 5.9 15.6 27.1 5.7 15.4 26.6 1.952 6.3 10.8
Homer 221k 309k 174k 246.33 351.2 189 7.267 11.5 10.8 28.2 32.9 34.1 5.49 7.1 24.5 5.3 7 24.1 1.8 2.8 9.7
Horse 270k 371k 206k 353.29 508 273.3 8.508 11.9 12.7 30.5 34.6 36.2 4.4 7.1 26.1 4.3 7.1 25.7 1.46 2.8 10.4
Lucy 224k 306k 166k 400.41 349.95 200 10.25 11.8 13.5 29.3 34.5 35.2 4.67 10.2 26.3 4.5 10.2 25.8 1.53 4.1 10.4

Nefertiti 326k 443k 239k 502.9 740 373.75 16.2 92.9 12.6 31.3 33.7 38 2.94 4.1 24.9 2.8 4.1 24.5 0.99 1.6 10
Penguin 264k 364k 211k 299.99 417 232.5 8.027 12 10 28.9 34.5 33.4 6.2 11.6 28.6 5.9 11.5 28 2.02 4.7 11.5
Spot 292k 416k 232k 370.166 547.9 284.98 8.003 12.4 10 29.3 34.8 34.9 5.95 9 27.8 5.7 9.1 27.3 1.94 3.7 11.1

Suzanne 311k 448k 262k 404.163 606 337 7.97 13.7 10.9 33.6 39 37.8 6.8 11.3 33.5 6.5 11.3 32.8 2.23 4.6 13.4
Turtle 236k 347k 223k 267.365 386.6 260.46 60.77 12.2 152 25.57 33.6 29.6 13.6 18.4 30.8 12.9 18.1 30 4.39 7.3 12.9

Average 266k 370k 207k 346.485 485.856 261.722 12.543 20.152 22.478 29.531 34.42 35.266 5.452 8.968 26.982 5.23 8.911 26.489 1.787 3.596 10.8

Comparison with SPH-Based Relaxation To en-494

hance packing density, a comparison experiment be-495

tween the SPH-based relaxation [21] and our method496

was conducted using the DEM. Results from Figure 7497

revealed that the SPH-based relaxation exhibited con-498

siderable instability during the early stages of simula-499

tion, which is likely due to high particle overlap re-500

sulting from the algorithm’s application to irregularly501

distributed multi-sized particles. In contrast, our pro-502

posed method demonstrates significantly more stable503

simulations, and increases packing density with min-504

imal particle overlap, as shown in Table 1. Further-505

more, we performed a quantitative analysis to assess506

the stability of our method by comparing the total en-507

ergy, as shown in Figure 9. The blue line in the figure508

depicts the total energy variation of the DEM simula-509

tion with non-overlapping particles in the initial stage.510

Its variation trend is highly similar to that of our pro-511

posed method (green line) during the DEM simula-512

tion. However, the SPH Relaxation-based method pro-513

duces abnormally high total energy values during the514

early stages of the simulation. The unstable simula-515

tion results, as shown in Figure 7, provide further evi-516

dence of this issue. As outlined in Section 4.3, our pro-517

posed method for further enhancing the particle pack-518

ing density cannot completely eliminate particle over-519

lap, leading to a slightly higher total energy in the520

DEM simulation compared to the case without particle521

overlap. Nevertheless, the average overlap rate between522

particles packed by our method is significantly below523

1%, whereas that of the SPH-based method is approx-524

imately 30%. This discrepancy is also why our method525

can produce stable DEM simulations, while the SPH-526

based method cannot.527

Comparison Experiments on Various Predefined528

Particle Size Distributions To illustrate the versa-529

tility of our method, we conducted experiments using530

three distinct representative particle size distributions,531

as shown in Figure 8. We present visualizations of the532

resulting multi-sized particle packing and correspond-533

ing particle distributions. For the quantitative analysis534

results of these three sets of experiments, please refer 535

to the data row labeled ’Penguin’ in Table 1. 536

Application to Discrete Element Method Herein, 537

we present the results of multi-sized particle packing ex- 538

periments on 15 commonly used 3D models to demon- 539

strate the applicability and versatility of our algorithm 540

in handling objects of arbitrary geometry. The obtained 541

packed particles are shown to be stable when applied 542

to DEM-related algorithms for sand-like simulation (see 543

Figure 10). In Table 1, we provide a comprehensive 544

record of the results of our multi-sized particle pack- 545

ing experiments for the 15 commonly used 3D mod- 546

els, including the total number of particles, the com- 547

putational time, the average overlapping rate, and the 548

porosity. Moreover, we employed three metrics, Bhat- 549

tacharyya Distance (BHD), Jensen-Shannon Divergence 550

(JSD), and Kullback-Leibler Divergence (KLD), respec- 551

tively, to quantitatively evaluate the difference between 552

the particle size distribution obtained by our algorithm 553

and the pre-defined particle size distribution. Specifi- 554

cally, these three indicators can serve as measures to 555

assess the similarity between two distributions. A value 556

closer to 0 indicates a higher level of similarity between 557

the two distributions, and a value of 0 suggests that 558

the distributions are identical. As shown by the results 559

in Table 1 from the experiments conducted using three 560

different predefined distributions, the indicators used to 561

evaluate the similarity of the distributions range from 562

approximately 0.1 to 0.001. These results highlight the 563

effectiveness of our algorithm in generating particle dis- 564

tributions that closely resemble the pre-defined distri- 565

butions. 566

6 Conclusion 567

This study presents the XProtoSphere method, a multi- 568

sized particle packing algorithm that can conform to a 569

pre-defined distribution by extending the ProtoSphere 570

approach. Specifically, the radius of each prototype is 571

gradually adjusted to match its target radius. Addition- 572

ally, we propose a randomly ODDF-based strategy to 573
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Fig. 9: Quantitative assessment of the stability of par-

ticle relaxation methods based on SPH and DEM

through comparative total energy analyses

enhance the initial particle insertion phase and enable574

the packing of a larger number of particles. Finally, we575

integrate the XProtoSphere with the Discrete Element576

Relaxation method to further increase packing density577

and minimize particle overlap, which are essential for578

stable granular material simulations.579

The major limitation of our algorithm that we need580

to remove overlapping particles and insert newly gen-581

erated particles without overlap when all prototypes582

converge. It presents two challenges: firstly, it is diffi-583

cult to parallelize this process on the GPU, as it may584

consume significant computational resources. Secondly,585

the removal of overlapping particles can result in a586

large discrepancy between the final packed particle dis-587

tribution and the pre-defined particle distribution. To588

address these issues, we would like to propose a fully589

GPU-based XProtoSphere algorithm in the further re-590

search, which can control particle size distribution more591

effectively by avoiding the need for particle deletion. In592

addition to computational performance-related issues,593

while our proposed method allows for the regulation of594

the particle radius distribution, it does not have the595

capability to regulate the spatial distribution of parti-596

cles with varying sizes. One potential solution involves597

utilizing the medial axis-based local geometric feature598

function introduced in Adams et al. [1] to regulate the599

spatial distribution of particles. However, this approach600

presents a challenge in simultaneously regulating the601

distribution of particle sizes. Therefore, in future work,602

we would like to propose a method that can effectively603

control both the particle size distribution and the spa-604

tial distribution of multi-sized particles. By doing so,605

we can extend the applicability of the XProtoSphere606

method to a wider range of scenarios.607
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